F ENGIN (AUTON	IEERIN NOMOU	IG & T JS)	ECHNO	 LOGY:: PUT
F ENGIN (AUTON	IEERIN NOMOU	I G & T JS)	ECHNO	∟ LOGY:: PUT
(AUTON	NOMOL	JS)	201110	
ar& Sup		, ,		
and it many that that the	plemer	ntarv E	Examina	tions Mav/Ju
NCED FL	LUID D	YNAM	IICS	
Thermal	Enginee	ering)		
	U	0)		Max. Marks:6
((Thermal	(Thermal Enginee	(Thermal Engineering)	(Thermal Engineering)

UNIT-I

How would you describe the following: 1

- (i) Bernoulli's equation
- (ii) Three dimensional flow
- (iii) Laminar flow
- (iv) Viscous flow

OR

Discuss in detail about the derivation of momentum equation by using integral and L5 2 **12M** differential approach.

UNIT-II

3	Discuss in detail about the irrotational flow and derived equations.	L5	12M				
	OR						
4	What are the application of empirical relation to various geometries for laminar and	L1	12M				
	turbulent flows and explain in detail.						
UNIT-III							
5	Evaluate in detail about the laminar boundary layers.	L6	12M				
	OR						
6	Explain in detail about the boundary layer equation.	L1	12M				
	UNIT-IV						
7	Explain the characteristics of turbulent flow.	L1	12M				
	OR						
8	Derive the governing equation for turbulent flow.	L5	12M				
	UNIT-V						
9	Discuss in detail about the layout of fluid flow experiments with suitable sketch.	L5	12M				
OR							
10	Explain the importance of data analysis with some application.	L1	12M				
	*** END ***						

L1 **12M**

R2(